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ADAPTIVE CONTROL OF A MANIPULATOR WITH A FLEXIBLE LINK

by

Y. P. Yang and J. S. Gibson
Department of Mechanical, Aerospace and Nuclear Engineering

University of California, Los Angeles 90024

ABSTRACT

An adaptive controller for a manipulator with one rigid link and one flexible link is presented. The
performance and robustness of the controller are demonstrated by numerical simulation results. In the
simulations, the manipulator moves in a gravitational field and a finite element model represents the flexible
link.
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I. Introduction

There is extensive literature on adaptive control of robotic manipulators with rigid links [1 - 4].

Recently, researchers have begun to apply adaptive control to manipulators with flexible links. For a linear

flexible link, Nelson, Miltra and Boie [5, 6] use an on-line parameter estimator to estimate an unknown

payload and then compute periodic updates of optimal control gains that depend in a known explicit way

on the payload mass. Chung and Leininger [7] applied adaptive pole placement to the

six-degree-of-freedom JPL Standford arm, and in one simulation they included a static elastic deflection of

the third link. Yuh [8] applied a discrete-time model reference adaptive controller to a single flexible link.

The adaptive controller was designed for a rigid link disturbed by a process noise, which represented flexible

modes, while the simulation model included the flexible modes. The adaptive controller in [8] appeared

not to be able to suppress all oscillations about the final position of the link.

This paper presents a digital adaptive control scheme for a manipulator with one rigid link and one

flexible link. The adaptive control algorithm is indirect; i.e., the control law at each sampling time is based

on a prediction model of the plant whose time-varying parameters are estimated adaptively. This prediction At

model is linear and of sufficient dimension to reflect some but not all of the elastic degrees of freedom in

the plant. Section 2 describes the manipulator model, in which the flexible link is represented by three finite

elements, and Section 3 discusses the prediction model and parameter estimation. Section 4 presents the

control law, which minimizes a weighted one-step-ahead quadratic criterion involving a reference model.

Section 4 also discusses a continuous-time PD control loop that improves robustness and reduces control

chattering in the closed-loop system produced by the adaptive controller.

Section 5 presents simulation results. In the simulations, the manipulator was modeled by the

comprehensive nonlinear model described in Section 2, even though the adaptive algorithm is based on a

linear prediction model. Because the order of the prediction model is smaller, by two modes, than the order

of the manipulator (plant), the numerical results in Section 5 show that the adaptive controller is robust

with respected to unmodeled higher-frequency modes. The simulations also demonstrate the effectiveness

of the PI) loop in reducing control chattering and the adaptive controller's ability to handle unknown

payloads.



2. Manipulator Nlodcl

Figure 2.1 shows the two-link manipulator to be controlled. The two joints centered at ol and 0) are

modeled as rigid discs. The first link is uniform, rigid and clamped to the first disc; the second link is a

uniform uler-Bernoulli beam, clamped to the second disc. The first disc is pinned at point o, which is

fixed, and the second disc is pinned to the end of the first link at point 02. At the other end of the second

link is a payload, modeled as a point mass M2 . A control torque ul acts on the first disc, and a control

torque u2 acts between the second disc and the secoid link.

M2

gravity

mi, El

020
, N

igure 2.1 The Two-l.ink Manipulator

Table 2.1 System Parameters

I= length of each link = 1.5 m r = radius of each joint = .05 in S

m = mass of each link = 1.2465 kg .11 = mass of each disc =62.325 e

1 of the flexible link = 3.9Q t) Nmn .112 = m iss ofpa yload

2

w ~ % I * W* S



In our dynamic model of the manipulator, we include all nonlinearities that would be present if both

links were rigid, and we model small (linear) transverse vibrations of the flexible link. We do not model

axial vibrations of the flexible link, but we include the effect of the inertial axial load on the bending stiffness.

For simulating the response of the manipulator, we approximate the flexible link with three finite

elements of equal length and we use cubic B-splines [9] as basis functions. This means that we have three

elastic degrees of freedom, which we take to be the transverse elastic displacements of nodes 2, 3 and 4.

(Node I is the end of link 2 attached to the second disc; node 4 is the end of link 2 to which the payload

is attached.) With the two rigid-body degrees of freedom then, there are five degees of freedom in our

simulation model of the two-link manipulator.

For the finite element model of the manipulator, the generalized displacement vector is

q = [0] 02 q3 q4 q5 ]T where 0, and 02 are the rigid-body angles and q3 , q4 and q5 are the transverse elastic

displacements of nodes 2-4 on the second link. I.agrange's equations for the finite element model have the

form

[NI(q) + NI(q)]q1 + Dq + [K + Ka(q, 4)]q + N(q, )= Bu, (2.1)

where NI(q) is a symmetric, positive definite mass matrix, K is the symmetric, nonnegative stiffness matrix

due to the bending stiffness of the second link, N(q, e) is a vector containing various gravity and inertial t,"!
torques and B is a matrix containing I's and O's. The matices Ia(q) and K( q , q) represent the effect of

the inertial axial load on the stiffness of the flexible link; Ka(q, q) is symmetric but .I,(q) is not. In our5
model, the damping matrix D is equal to 10-  times the part of the mass matrix that would correspond

to the flexible link if 01 and 02 were held constant; this means that we model small proportional danping

for the flexible link. A complete derivation of the equations of motion in given in [10]. ", ,

Two observations about (2.1) that are very important for our purposes can be made from the detailed

equations of motion in [10]. First, q and q can be factored out of N(q, q) in such a way that (2.1) can S

be written

M(t)q + D(t)q + K(t)q = Bu, (2.2.)

where the matrices M(t), D(t) and K(t) are polynomials in q(t), q(t), cos i(i), sin i(t) and

sin Oi (t))0i(t). Second, for sutfficicntly small elastic vibration of the flexible link, no dominant tenns in

the matrices NI(t), Iyt) and K(t) involve the clastic displacements q, q4 and q5. llcncc the dominant

terms in the coefficient matrices in (2. 1) vary no faster than the rigid-body anglcs and angular velocities.

3
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3. Prediction Model and Parametcr Estimation

Now we consider digital control of (2.1) and (2.2) by zero- order sample and hold; i.e., at the begnning

of the kth sampling interval (k = 0, 1, 2, ...), we sample an output vector y(k) and apply a constant control

vector u(k) for the duration of the k th sampling interval. We take y = [01 0 2 y31 T where 01 and 02 are the

the rigid-body angles and Y3 = q5 is the transverse elastic deflection of the end of the flexible link that holds

the payload.

According to standard linear system theory, an input/output model for (2.2) with digital input and digital

linear output has the form of the ARXIA model

P1
4

y(k) + A(k)y k - i) = LB,(k)u(k - i), (3.1)
i= 1 i=1I- -

where Ai and B, are matrices of appropriate dimension and n, is an integer not greater than twice the

dimension of q (i.e., na < 10). If the sampling rate is fast compared to the time rates of change of the

dominant terms in the coefficient matrices in (2.2) (i.e., if the sampling rate is fast compared to the

rigid-body angular velocities and accelerations), then the coefficient matrices in (3. 1) can be considered to

vary slowly. In this case, an adaptive parameter estimator should be able to track the coefficients in (3.1)

and predict y(k) from data taken through time k- 1. Such prediction is the basis for the subsequent adaptive

control algorithm.

In (3.1), the coefficients At(k) may be full matrices, in which case na is minimum, or they may be

constrained to be diagonal. If the coefficient matrices in (2.2) were constant, the A,(k)'s could be taken as

scalar coefficients. We have found that our adaptive control scheme works best for the manipulator in this

paper when the A(k)'s are diagonal with the second and third diagonal elements constrained to be equal

in each At(k); i.e., one independent ARMA model is used for the first output channel, which comes from

the first link, and another independent ARMA model is used for the second and third output channels, S

which come from the second link. This is the kind of prediction model used in the simulation in Section ,,

5.

For adaptive parameter estimation and output prediction, we use a standard recursive least squares

algorithm [11, page 95] with a forgetting factor that varies with the magnitude of the prediction error as

proposed in [12].

4
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4. Adaptive Control Algorithm

4.1 Control Law

The ideal system output y. is defined so that the error between the ideal output and a reference sigmal -.

Yr decays according to

[y,(k + 1)- y,(k + 1)] + ag(k)[y,(k)- yAk)] = 0, (4.1)

where

~aegk) = (ao - f), +af (4.2)

with a0, af and y are positive scalars less than 1. To make the true output y(k) approximate the ideal

performance, the control u(k) is chosen at each step k to minimize

J(k) = II'(k + I) - yAk + 1) + ae(k)[y(k) - yr(k)]Il' + Jlu(k~Il(3

+ 1lu(k) - u(k - l) R2(k)

where Q is a nonnegative diagonal matrix, R, and R2(k) are positive definite diagonal matrices with

R2(k) = R21 # k (4.4)

A0
for some nonnegative f# less than 1, and the prediction Y(k + 1) is obtained from (3.1) with the least-square

estimates A(k) and B,(k) of the ARMA parameters. Since R, is positive definite, there is a unique u(k)

that minimizes J(k), and this u(k) is a linear function of the histories of y, u, and yr It is straightforvard
A

to write down the control law from (4.3). The gains in the control law vary with aj(k), R2(k), A(k) and

B1(k).

This adaptive control algorithm is similar to model reference schemes discussed in

[II1, Sections 5.2 and 6.3]. An important difference between the control laws discussed there and the one .

here is that the error dynamics model in (4.1) and the penalty in (4.3) on the difference between successive

control inputs vary with time. If the plant can be represented exactly by (3.1) with constant coefficients and

if y and u have the same dimension, then stability results for the closed-loop system produced by our

adaptive controller are similar to stability results in [11, Chapters 5 and 6]. In particular, if

rank(B1 )= dim(Qy) and R,= R2 = 0, then our adaptive controller reduces to a one-step-ahead model

reference adaptive controller, and a sufficient condition for asymptotic stability is that all transmission zeros

of the plant lie inside the open unit circle.

~.
5
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Of course, (3.1) with constant coefficients cannot represent the manipulator in our problem exactly, but

when the motion is linearized about an equilibrium position (and the control torques are perturbed about

appropriate static torques), numerical results indicate that the square system that relates the torque -b

perturbations to the perturbations in the rigid-body angles has all discrete-time transmission zeros on the

unit circle when no open-loop damping is modeled and all transmission zeros strictly inside the unit circle

when structural damping in the flexible link is modeled. We have demonstrated this numerically [10]; it

is straightforward but tedious to write out the equation that we used. The analogous distributions of

continuous-time transmission zeros for flexible structures with colocated sensors and actuators is well

known.

Probably because a time-invariant linear ARMA model cannot represent the manipulator exactly and

because we model very small structural damping, we have found that simple one-step-ahead adaptive

control (R1 = R 2 = 0) often produces an unstable system, even when we choose y = [01 92] T to produce

a minimum phase square plant. However, slight perturbations from this case have yielded effective stable

controllers; i.e., R 1, R2(k) and the third diagonal element of Q are small. With the third output, we can

improve the settling near equilibrium positions by placing a small penalty on elastic vibration. This requires

either R1 or R2(k) to be positive definite for there to exist a unique u(k) to minimize J(k). A positive

definite R2(k) serves a more important purpose, though. The plant zeros near the unit circle tend to

produce chattering in the control, especially during the early large-angle motion when the prediction model

is least accurate. We have been able to reduce such chattering substantially with small values of R2(k).

Near the final steady-state position, the motion is linear and the prediction model is more accurate, so that

we do not need a positive R2(k) to prevent chattering. Thus we allow R(k) to decay to zero
asymptotically, thereby placing greater emphasis on near-steady-state output error in (4.3). We usually can

eliminate the chattering by tuning R2(k), but we do not yet have guidelines for this tuning.

We should note that our statements about stability of the closed-loop system consisting of the

manipulator and the adaptive controller and about control chattering are based on two kinds of numerical

results: using the nonlinear model of the manipulator to simulate the closed-loop response and on

computing closed-loop eigenvalues for the linearized equations near an equilibrium position. The order (10)

of the plant, the large nonlinearities in the plant and the fact that we need ae(k) and R2(k) to vary with time

in the control law, have prevented us so far from proving stability.

6
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While we have found that Q, R, and R2(k) can be chosen to produce a stable closed-loop system for

any final postion of the manipulator and any payload, the adaptive controllers often are not robust with

respect to the choices of Q, R1 and R2(k). This lack of robustness appears to result from the

near-nommimum phase characteristics of the plant. Robustness can be improved by inserting an inner

continuous-time PD control loop with the (continuous-time) transfer function Tpl)(s) as shown in Figure

4.1. Such a control can shift the plant poles and zeros to give the adaptive controller an easier job. We

have used decentralized PD loops at the individual joints to increase robustness, but we have had geater

success with a PD loop designed according to [13] which provides at each joint a torque that is a linear X_

function of rigid-body angular displacements anU velocities at both joints. We give the P1) gains in Section Q,

5.

reference model

--q -
to A 0,

Ua [ adaptivC ContrlleII hI

+ 4

.- r robotic manipulator

0

aented plant 0,

Figure 4.1 Control System

The the first two components of the reference signal ylk) -- i.e., 01, and 0,, -- are computed off-line

and are the outputs of a reference model that is chosen to ensure that y(k) represents a reasonable response.

In our scheme Or and 02, are external inputs to the closed-loop system consisting of the manipulator and

7



the adaptive controller, and the dynamics of the reference model that produces 0 1r and 0 2r do not affect the

dynamics of the closed-loop system. Therefore, we will not discuss the details of this reference model except

to say that we solved an optimal linear regulator problem for each of two uncoupled second-order oscillators

to obtain two uncoupled linear reference models that produced the reference signals shown in lFigurcs 5.1

- 5.3. See [ 10] for details. Different reference models should work.

The third component of y,(k) corresponds to the elastic tip deflection of the flexible link, which the

control torques cannot drive to zero in the gravity field. We feed the measured tip deflection into a low pass

filter and use the output of this filter as the third component of yg(k). This refencncc signal is an estimate

of the static tip deflection under gravity. During the large-angle motion of the manipulator, this probably

is not a good estimate, but we take the third diagonal element of Q so small relative to the first two diagonal

elements that the third component of yr(k) affects the control only near a steady-state postion, where the

only remaining motion should be linear vibration about the static position.

For the low pass filter, we use the digital filter whose transfer function is

lI- b (45)
z- b

where b = exp( - wch) (h sampling time = .01 sec) and the corresponding comer frequency (o, is 4

I I. This filter should attenuate the oscillations in the tip measurement, since the first natural frequency

of the flexible link is 5.45 1 lz.

Adaptive control algorithms often use an initial learning period during which inputs and outputs vary

only slightly from steady-state values to allow the parameter estimator to converge to initial parameter

estimates for the prediction model before the controller begins to produce large changes in the state of the %

plant. We have found that a learning period is essential in the manipulator control problem here. Since

the manipulator operates in a gravity field, nominal static torques are required to hold the manipulator near S

the initial position. Our control scheme assumes that the static torques are known within 10" for the case

of zero payload. These torques (with - 10% error in our simulation) are taken as the control inputs during

the first sampling interval (.01 sec) -- even when the manipulator has an unknown payload -- and it is the

adaptive controller's job to hold the manipulator near the initial position for a learning period of at lea'lt .

45 samples, after which the learning period ends when the rigid-body angles are within 0. 12 rad of the initial

values and predicted values of these angles are within 20% of the corTect values. During the learning period,

R2(k) is set equal to a constant diagonal matrix and the magnitudes of the control torques are constrained

8



not to exceed 1.5 times the magnitudes of initial torques. After the learning period, R2(k) is reset to a

smaller matrix and then decays according to (4.4). The larger R2(k) and the torque constraint help prevent

torques based on erroneous early parameter estimates from causing the manipulator to move significantly

during the learning period.

5. Simulation

In the simulations reported here, the adaptive controller moves the manipulator from the horizontal -

position (01 = 90', 02 = 0) to the position 01 = 135', 02 = 450. (The motion is in a vertical plane, under

gravity.) The initial elastic deflection is zero, and the final elastic deflection also is zero because the final

position of the flexible link is vertical. (For final positions with nonzero static tip deflection, the estimate

of this deflection produced by the filter in (4.5) can be used to correct the error in the final absolute tip

position by small increments in 01 and 02.)

On each sampling interval, the nonlinear response of the manipulator was simulated on UCLA's IBM,

3090 computer by solving the equations of motion in (2.1) with a fourth-order Runge-Kutta algorithm with

variable step size [ 14, pages 83 - 84]. The sampling rate is 100 lIz.

The control parameters in (4.2)-(4.3) are

Q =diag[30, 20, .02] R,=diag[10, 10-  ]

a,=.98 af=. 9 8 3 during learning period

R20 =diag[2x 10- , 2x 10-2] (3=1

a, =.98 af =. 7  y = e-0 0 7  01 after learning period

R20 = diag[2x 10- 5, 2x 10] .1 ° l a r i,

The order of the ARMA model used for prediction in the adaptive controller is na = 6, even though the d .

true plant order is 10. This reduced-order prediction model reflects our expectation that the second and

third flexible modes in the simulation model are excited only slightly.

The continuous-time PD loop is based on the rigid-body equations of motion linearized about the final

position. To demonstrate robustness with respect to plant uncertainties, the PD design is based on gravity

torques and a rigid-body mass matrix that are 40% 'greater than their correct values for zero payload. The 16

proportional and derivative gain matrices, designed according to [13], are

9 "
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r 266793 82267] a 896862 27234]=82267 491141 and KD= [27234 13807]"

For the two-degree-of-freedom linear system on which these gains are based, the continuous-time PI)

controller produces a repeated pair of closed-loop cigenvalues at -4 + 1.94j. See [10] for more detail.

In figures 5.1 and 5.2, the payload M2 is 20% of the mass of the flexible link. While the response of

the manipulator is good in Figure 5. 1, there is undesirable control chattering. The addition of the

continuous-time PD loop substantially reduces the control chattering in Figure 5.2. Figure 5.3 shows the

response for zero payload. The same adaptive control law was used for all three simulations, and the same

inner PI) loop was used for Figures 5.2 and 5.3. The tip oscillation and the control torques can be made

smoother than in Figures 5.2 and 5.3 by adjusting the parameters in the control law after the PD loop is

added, but using the same adaptive loop for all three simulations better demonstrates the adaptive

capability.

The plots of the tip oscillations in all three simulations indicate that the first flexible mode is excited

significantly, that the second mode is excited slightly during the early motion and that the third mode is

neciible. Since the second mode can be seen in the early response, we conclude that the adaptive

controller is robust with respect to this small unmodeled disturbance. U
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AIPENI)iX Accuracy of the Linear ARNIA Model

To show the accuracy of a linear time-varying .\RMA predictor for a manipulator moving in a large

workspace, we applied our adaptive parameter estimator predictor to an experiment performed in the

Intellitent Systems Robotics Laboratorv at the NASA l.anglev Research Center. The experimental data

were obtained from the second joint of a UNIMATE 60(0 PUMA industrial robot with six degees of

freedom. The input torque u, by recording the motor voltage, and the riid angle 0 were measured. The

sampling rate is 30 lIz.

The parameters of the nonlinear model are first identified by the Levenberg-Marquardt method [15],

which has been written into an IMSI. subroutine ZXSSQ in FORTRAN language. The global trajectory

is very hard to be matched with the nonlinear model

+ c + c 2  8 + c 3 sin0=cu, (AlI)

where c1O is a normalized viscous damping force, c01I 01 is a normalized quadratic friction force, c. sin 0

is a nomaalizcd eavitv force and c4u is a normalized input torque. These time invariant parameters in the

time interval [2.8, 14] (seconds) are estimated as r, = 5.59 , c2 = 11.52, c3 = 5.84, c4 = 11.78.

T[he experimental output and the predicted trajectory (i.e., the output of the model (A.1)) are shown in

Figure A.1. ,

When a second-order linear ARMA model \with single input and single output is selected in the form-

of

22 "
00)= -,,(1)0(1 - 0)+ h.', (t) 1, 1- i) . (A..2) ,

the predicted output fits closcl. the experimental data, as sho'.% n1 in Figure A.2. 1lhe variation of parameters

is shown in Figures A.3 and A.4. [he parameters ', and b are estimated bN the recursive least-squares

algorithm [I I] with the forgetting factor at I, It is some\ hat surprising how well the linear ARNIA model

with the virtually constant parameters in Figures A.3 and A.4 predicts the output of the manipulator under

the nonlinear gavity torque.
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Figure A.2 Adaptive Parameter Identification with a Second-Order Linear ARMIA Model
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Figure A.3 Parameter Variation of the Second-Order Linear ARMA Model(a's)
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Figure A.4 Parameter Variation of the Second-Order Linear ARMA Model(b's)
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